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Abstract 13C Methyl TROSY NMR spectroscopy has

emerged as a powerful method for studying the dynamics

of large systems such as macromolecular assemblies and

membrane proteins. Specific 13C labeling of aliphatic

methyl groups and perdeuteration has been limited pri-

marily to proteins expressed in E. coli, preventing studies

of many eukaryotic proteins of physiological and biome-

dical significance. We demonstrate the feasibility of effi-

cient 13C isoleucine d1-methyl labeling in a deuterated

background in an established eukaryotic expression host,

Pichia pastoris, and show that this method can be used to

label the eukaryotic protein actin, which cannot be ex-

pressed in bacteria. This approach will enable NMR studies

of previously intractable targets.
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Well-resolved multi-dimensional NMR spectra are

essential for obtaining structural and dynamic informa-

tion on backbone and sidechain moieties within proteins.

However, obtaining such spectra of large macro-

molecules is complicated by poor peak dispersion and

line broadening due to rapid transverse relaxation of

nuclear magnetization and spectral crowding. To over-

come this problem for aliphatic sidechains, proteins can

be specifically labeled with 13C in the methyl groups of

isoleucine, leucine, and valine residues using 13C a-ke-
toacid precursors in E. coli (Gardner and Kay 1997;

Goto et al. 1999). When paired with selective protona-

tion in an otherwise deuterated background (Rosen et al.

1996), this approach takes advantage of the favorable

relaxation properties of 13C-methyl groups with the ap-

plication of transverse relaxation optimized spectroscopy

(TROSY) (Pervushin et al. 1997; Ollerenshaw et al.

2003). However these methods have remained unavail-

able for many eukaryotic proteins due to poor expression

and folding in E. coli resulting from lack of required

chaperones, lack of proper post-translational modifica-

tions, or improper membrane composition.

Several different eukaryotic hosts, including fungi

(Miyazawa-Onami et al. 2013), insect cells (Nygaard

et al. 2013; Kofuku et al. 2014), and mammalian cells

(Werner et al. 2008), have been used to overexpress

proteins for NMR. While these systems have succeeded

in producing amino acid-specific and uniformly 15N or
13C labeled material (Chen et al. 2005; Fan et al. 2011;

Gossert et al. 2011; Strauss et al. 2005; Hansen et al.

1992), the high expense and difficulties in perdeuteration

have limited their widespread use for larger proteins. The

methylotrophic yeast Pichia pastoris is a well established

expression host (Cereghino and Cregg 2000) for proteins

that cannot be made in E. coli—eukaryotic membrane
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proteins such as ATP transporters (Lee et al. 2002), ion

pumps (Strugatsky et al. 2003) and G-protein coupled

receptors (Shimamura et al. 2011; Hino et al. 2012) have

all been successfully overexpressed in and purified from

this organism. Genetic manipulation, transformation, and

growth of P. pastoris are more rapid than for higher

eukaryotes such as insect cells and mammalian cells.

Overexpression using the tightly regulated AOX1

promoter often yields milligram quantities of recombi-

nant protein per liter of P. pastoris suspension culture

(Cereghino and Cregg 2000). P. pastoris is also favor-

able for NMR studies given its ability to grow on de-

fined minimal media, uptake isotope-containing

precursors, and efficiently incorporate deuterium at non-

exchangeable sites (Morgan et al. 2000). Despite con-

servation of branched-chain amino acid biosynthesis

pathways from E. coli (Fig. 1), site-specific methyl la-

beling using a-ketoacid precursors has not been reported

in. P. pastoris.

We initially explored the use of 13C-methyl a-keto-
butyrate in P. pastoris cultures to label maltose binding

protein (MBP) with 13C at the d1-methyl groups of

isoleucine (Ile) residues. MBP has well-characterized
1H-13C 2D NMR spectra (Gardner et al. 1998) and is

highly expressed in P. pastoris (Li et al. 2010). We

collected 1H-13C heteronuclear single quantum coher-

ence (HSQC) spectra on MBP that was labeled by

addition of 13C-methyl a-ketobutyrate to the culture

media (Fig. 2a).

Resonances for all 22 Ile d1-methyl groups of MBP

(Gardner et al. 1998) are observed in our spectrum

(Fig. 2a, Fig. S1), while little signal is present in other

regions (indicating lack of ‘‘bleed-through’’ of the iso-

tope into other amino acids—see Fig. 3). Based on

tryptic peptide mass spectra (Fig. 2b), we estimate the

efficiency of incorporation for the a-ketobutyrate-derived
13C methyl probe to be 51 ± 7 % in a protonated

background (see Supporting Information). The power of

TROSY to obtain spectra of high-molecular weight

species can only be exploited in the context of partial or

full deuteration (Gardner et al. 1997; Wider and

Wüthrich 1999; Ruschak and Kay 2010), which elim-

inates dipolar relaxation effects of surrounding protons

on a given 13C-methyl spin system. To assess simulta-

neous 13C methyl labeling and perdeuteration in our

system, we made samples of MBP in both P. pastoris

and E. coli. We quantified the level of Ile d1-methyl

labeling in P. pastoris-derived deuterated MBP by

comparing intensities to a concentration-matched E. coli

sample (with assumed full incorporation at Ile d1-methyl

sites), yielding a labeling efficiency of 45 ± 6 % (Figure

S2). The total deuteration level of P. pastoris-expressed

MBP was estimated at 90 % through ESI-LC–MS ana-

lysis (Figure S3; a comparison of labeling efficiency and

Fig. 1 Incorporation of 13C-

methyl groups at the d1 position

of isoleucine residues in

proteins expressed in P. pastoris
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yields of recombinant MBP from P. pastoris vs. E. coli

is shown in Figure S4). Addition of a-ketoisovalerate led

to very modest labeling of leucine d- and valine c-
methyl groups (\5 %, not shown), suggesting that la-

beling of these sites would require significant optimiza-

tion, perhaps through cytoplasmic overexpression of

branched-chain-amino-acid aminotransferase as reported

for a K. lactis expression system (Miyazawa-Onami et al.

2013).

The impetus for using P. pastoris for 13C methyl la-

beling is to access proteins that are not amenable to

expression and purification from E. coli—for example,

the eukaryotic cytoskeletal protein actin. Actin’s capacity

to change between monomeric and polymeric states

arises from its conformational dynamics between distinct

globular and filamentous forms (Oda et al. 2009; Pollard

and Cooper 1986). NMR dynamics measurements would

represent a significant new tool to study the biophysics

of actin polymerization and interactions with regulatory

molecules (Schmid et al. 2004; Kudryashov and Reisler

2013). While structures of actin monomers have been

determined by X-ray crystallography (Otterbein et al.

2001; Rould et al. 2006; Nair et al. 2008) and actin

filaments have been characterized by electron microscopy

(Fujii et al. 2010; Ecken et al. 2015), expression of

isotopically labeled actin for NMR has not been report-

ed. Actin cannot be expressed at high levels in E. coli

because of the lack of eukaryotic chaperone systems that

are necessary for folding.

Biophysical characterization of actin is intrinsically

difficult because actin polymerizes at concentrations above

100 nM. We therefore attempted to express a non-

Fig. 2 Labeling of d1-methyl

groups of MBP expressed in

Pichia pastoris. a 1H-13C HSQC

spectrum of 225 lM MBP

labeled with a-ketobutyrate.
Spectrum was recorded at 25 �C
on a Varian 800 MHz

spectrometer. Peaks

corresponding to Ile d1-methyl

groups are labeled in reference

to assigned spectra (Gardner

et al. 1998). Two unassigned

peaks likely arising from

differences in constructs are

denoted with an asterisk. bMass

spectra of tryptic peptides

containing Ile (left) and not

containing Ile (right)
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polymerizable Drosophila 5C actin (51.5 kDa, 94 % iden-

tity to human actin) mutant in P. pastoris with mutations

that impair the fast growing ‘‘barbed-end’’ of the filament

(Zahm et al. 2013). However, the mutant proved toxic,

presumably because it interferes with the polymerization of

endogenous actin. To solve this problem, we generated a

C-terminal fusion to human thymosin b4, an actin binding

protein that blocks the intact, slow-growing ‘‘pointed-end’’

and thus ameliorates toxicity (Noguchi et al. 2007). This

strategy resulted in high expression levels (10 mg/L of

culture) and enabled purification to homogeneity (Sup-

porting Information and Fig. S5).

A representative HMQC (methyl TROSY) spectrum of
13C-Ile-d1-methyl actin is shown in Fig. 4a. Notably, for a

protein with 30 Ile residues, we observe 33 peaks in the
1H-13C spectrum, likely reflecting slow chemical exchange

processes at some sites. Taking advantage of the ability to

highly deuterate proteins in P. pastoris, we repeated ex-

pression ofDrosophila 5C actin in cultures where cells were

adapted to D2O-containing media prior to induction, result-

ing in 2.5 mg/L of 13C-Ile-d1-methyl perdeuterated actin.

Lines in the 1H-13C HMQC spectra of the deuterated sample

were much narrower than those in the HMQC spectrum of

non-deuterated actin (Fig. 4a, b).

Future use of TROSY NMR methods to study the dy-

namics of high-MW mammalian protein complexes and

membrane proteins will depend on the tractability of isotope

incorporation.We have demonstrated efficient incorporation

Fig. 3 Expanded view of the 1H-13C HSQC spectrum of isoleucine

d1-methyl labeled maltose binding protein shown in Fig. 2a. Top

panel shows horizontal slices of the 2D dataset (bottom panel), taken

at approximately 13C = 10.3 ppm (black; Ile d1) and 20.6 ppm (red;

Val/Leu) to show representative signal-to-noise in the spectrum for

the labeled Ile d1 methyl groups versus the unlabeled (natural

abundance 13C) methyl groups of other amino acids. Inset of the top

panel shows the 13C = 20.6 ppm trace at 109 vertical scale of the

surrounding panel to provide a clearer sense of signal-to-noise.

Signal-to-noise measurements for all 22 Ile d1-methyl peaks resulted

in an average S/N ratio of 280
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of 13C at the Ile d1-methyl groups of proteins expressed in P.

pastoris, a robust eukaryotic expression host. In conjunction

with perdeuteration, we acquired high-quality 1H-13C

methyl TROSY spectra on Drosophila actin, which were

unobtainable before. This development, along with similar

approaches using other yeast systems (Miyazawa-Onami

et al. 2013), will allow 2D NMR spectroscopy to be applied

to many previously intractable proteins.

Fig. 4 NMR spectra of

Drosophila actin labeled and

overexpressed in Pichia

pastoris. a 1H-13C HMQC

spectrum of 13C-Ile d1-methyl-

labeled actin (180 lM).

b TROSY-HMQC spectrum of

perdeuterated, 13C-Ile d1-
methyl-labeled actin (150 lM).

Spectra were recorded at 25 �C
on a Varian 800 MHz

spectrometer
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